

Biosecurity Risk Assessment

SNL Biosecurity Team
Chemical & Biological Weapons Nonproliferation
International Security Center
October 23, 2005

under contract DE-AC04-94AL85000.

Biosecurity Based on Risk Management

- Biosecurity risk management considerations
 - Critical not to unduly compromise legitimate bioscience operations
 - Most biological materials can be isolated from nature
 - A security system cannot protect every asset against every conceivable threat
 - Security resources are not infinite
 - Security systems should be based on the asset or material that requires protection
 - Security systems should be designed to address unique situations
 - Impact operations only to the level required Use limited resources efficiently

Challenges to Securing Biological Agents

- Dual-use characteristics
 - Valuable for legitimate, defensive, and peaceful commercial, medical, and research applications
 - Possession does not imply intent
- Nature of the material
 - Living and self-replicating organisms
 - Cannot be reliably quantified
 - Cannot keep an accurate inventory
 - Used in very small quantities
 - Cannot visually discern whether material is missing
 - Exist in many different process streams in facilities
 - Decentralization makes restricting access to authorized individuals more difficult
 - Contained biological samples are virtually undetectable
 - Cannot use sensors to alert unauthorized removal
- Laboratory culture
 - Biological research communities not accustomed to operating in a security conscious environment

Yersinia pestis

Biosecurity Cost-Benefit Considerations

- Bioscience facilities are not unique repositories
 - Most agents can be isolated from nature
 - Many similar collections of agents exist worldwide
- Relatively few agents can be easily grown, processed, weaponized, and successfully deployed while maintaining virulence/toxicity
 - Very few agents used as a weapon could cause mass human, animal, or plant casualties
- Need a methodology to make informed decisions about how to design an effective and efficient biosecurity system

FMD outbreak, U.K.

Biosecurity Risk Assessment and Mitigation

Components of Biosecurity

6

Risk Management

- Establishes which assets should be protected against which threats
 - Assets include items that are:
 - Dangerous
 - Hard to replace
 - Rare
 - Critical to operations
- Ensures that the amount of protection provided to a specific asset, and the cost for that protection, is proportional to the risk of the theft or destruction of that asset
- Begins with a risk assessment
- Proceeds with risk mitigation
- Continuously improves with monitoring and adjustment

Biosecurity Risk Assessment

- 1. Evaluate assets (agent assessment)
- 2. Evaluate threat (lab activity and threat environment)
- 3. Evaluate risk

Integrated Biosafety and Biosecurity

Malicious Use Risk Group Evaluation

- Assess value of the agents from an adversary's perspective
 - Consequences
 - Transmissibility
 - Medical effects (morbidity and mortality)
 - Psychological impact
 - Economic impact
 - Weaponization potential
 - Acquisition
 - Production
 - Ease of growth
 - Ease of processing
 - Ease of storage
 - Dissemination
 - Modes (e.g. Aerosol, Oral)
 - Environmental hardiness

REPORTS

Chemical Synthesis of Poliovirus cDNA: Generation of Infectious Virus in the Absence of Natural Template

Jeronimo Cello, Aniko V. Paul, Eckard Wimmer*

9 AUGUST 2002 VOL 297 SCIENCE www.sciencemag.org

orusus er Vinosocu, Feb. 2001, p. 1205-1210 022-530200-504-00=0 - DOB 10.1128/VI78-3-1205-1210-2001 Jopenghe C 2001, American Society for Microbiology. All Rights Reserved. Vol. 25, No. 3

Expression of Mouse Interleukin-4 by a Recombinant Ectromelia Virus Suppresses Cytolytic Lymphocyte Responses and Overcomes Genetic Resistance to Mousepox

RONALD J. JACKSON, 62+ ALISTAIR J. RAMSAY, P CARINA D. CHRISTENSEN, SANDRA BEATON, DIANA F. HALL, P. 240- IAN A. RAMSHAW

Pest Animal Control Cooperative Research Centre, CSIBO Sussistable Econotems, and Division of Immunology and Cell Biology, John Cartin School of Medical Research, Australian National University, Carebona, Australia

Malicious Use Risk Groups

- Nonpathogenic
 - Malicious use would have insignificant or no consequences
- Low Malicious Use Risk (LMUR)
 - Difficult to deploy, and/or
 - Malicious use would have few consequences
- Moderate Malicious Use Risk (MMUR)
 - Relatively difficult to deploy, and
 - Malicious use would have localized consequences with low to moderate casualties and/or economic damage
- High Malicious Use Risk (HMUR)
 - Not particularly difficult to deploy, and
 - Malicious use could have national or international consequences, causing moderate to high casualties and/or economic damage
- Extreme Malicious Use Risk (EMUR)
 - Would normally be classified as HMUR, except that they are not found in nature (eradicated)
 - Could include genetically engineered agents, if they were suspected of being a HMUR

LMUR Agent Example: Mycobacterium leprae

- Consequences
 - Leprosy
 - Not highly virulent, most exposed people do not develop leprosy
 - Not highly contagious
 - Completely curable majority recover without treatment
- Weaponization potential
 - Production is a significant challenge
 - Not environmentally hardy
- Assessment: low consequences and low weaponization potential

Mycobacterium leprae

MMUR Agent Example: Coccidioides immitis

- Consequences
 - Coccidioidomycosis (Valley fever)
 - Usually asymptomatic, 30-40% of infected become ill
 - Not contagious
 - 5-10 out of every 1000 infected develop life-threatening infection
- Weaponization potential
 - Requires technical skills to handle
 - Easy to procure virulent strain (wide endemic area)
 - Easy to grow colonies and produce spores
- Assessment: low to moderate consequences and moderate weaponization potential

Coccidioides immitis

HMUR Agent Example: Bacillus anthracis

- Consequences
 - Pulmonary anthrax (via aerosolized anthrax)
 - High fatality rate
 - Not contagious, relatively high infectious dose required
 - Early diagnosis is difficult
- Weaponization potential
 - History of weaponization and terrorist use
 - Wide endemic area but many less virulent strains
 - Easy to grow colonies and produce spores
 - Very stable in environment and storage
- Assessment: moderate to high consequences and relatively high weaponization potential

Bacillus anthracis

EMUR Agent Example: Variola major virus

- Consequences
 - Smallpox
 - High fatality rate
 - Contagious
 - Very few people vaccinated
- Weaponization potential
 - History of weaponization
 - Very stable in aerosol
 - Extremely difficult to obtain
- Assessment: high consequences and moderate weaponization potential

Variola major

Results of Malicious Use Risk Group Evaluation

Other Assets at Biological Facilities

- Security Information or Systems
 - May be targeted to facilitate gaining access to dangerous biological materials
- Other Facility Assets
 - May be targeted by political extremists, disgruntled employees, etc.
 - May include:
 - High containment laboratories
 - Animals

Integrated Biosafety and Biosecurity

Elements That May Modify Risk

Consider lab experiment

Does planned experiment produce an agent with higher weaponization potential or higher potential consequences?

> For example: Increased stability, GMOs, large quantities, aerosol challenges

Threat Environment

- Adversary Classes
 - Terrorist
 - Extremist
 - Criminal
- Insiders
 - Authorized access to the facility, dangerous pathogens, and/or restricted information
 - Distinguish Insiders by level of authorized access
 - Site
 - Building
 - Asset
 - Facility management, site security, and local law enforcement interviews
- Outsiders
 - No authorized access
 - Local law enforcement, site security, and intelligence community interviews

Threat Potential

Evaluate threat potential of possible adversaries:

- Motive
 - Asset Attractiveness
 - How well does the acquisition or sabotage of the asset achieve the adversary's objective, or lead to achieving the adversary's objective?
- Means
 - Capability
 - Does the adversary have the skills, knowledge, and tools necessary to conduct the attack/meet the objective?
- Opportunity
 - Access
 - Does the adversary have routine access?
 - Are there other authorized individuals that might be present?

Biosecurity Risk: Insider vs. Outsider Threat

Integrated Biosafety and Biosecurity

Conclusions

- Need to integrate biosafety and biosecurity considerations into decisions about laboratory operations
- Biological facility risk assessment provides an opportunity to concentrate resources on the highest risks
 - Tiered system of protection based on risk assessment and risk management methodologies
- Parallels exist between safety and security risk assessment processes